
Eur. Phys. J. B 53, 169–184 (2006)
DOI: 10.1140/epjb/e2006-00367-6 THE EUROPEAN

PHYSICAL JOURNAL B

X-ray detected ferromagnetic resonance in thin films

Uniform precession in a steady-state foldover regime

J. Goulon1, A. Rogalev1, F. Wilhelm1, N. Jaouen1, C. Goulon-Ginet1, and Ch. Brouder2

1 European Synchrotron Radiation Facility, B.P. 220, 38043 Grenoble Cedex, France
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Abstract. We discuss the physical content of X-ray Detected Magnetic Resonance (XDMR), i.e. a novel
spectroscopy which uses XMCD to probe the resonant precession of the local magnetization in a strong
microwave pump field. We focus on the simplest case of a steady-state precession of elemental moments
in the non-linear regime of angular foldover. Like XMCD, XDMR is element and edge selective and could
become a unique tool to investigate how precessional dynamics can locally affect the spin and orbital
magnetization of p- or d-projected DOS. This should be possible only in the limit where there is no
overdamping due to ultrafast orbit-lattice relaxation.

PACS. 78.70.Dm X-ray absorption spectra – 78.20.Ls Magnetooptical effects – 76.20.+q General theory
of resonances and relaxations – 76.50.+g Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances;
spin-wave resonance

1 Introduction

X-ray Magnetic Circular Dichroism (XMCD) has become
an important tool to study orbital magnetism [1]. XMCD
benefits of the unique advantage to be element/edge
selective and became particularly attractive when the
magneto-optical sum-rules at spin-orbit split edges made
it possible to resolve the individual contributions of spin
and orbital moments at different sites [1–5]. Further in-
formation regarding the dynamics of magnetization rever-
sal at a subnanosecond time scale was already obtained
from pioneering XMCD experiments exploiting the time
structure of the ESRF storage ring [6]. We are concerned
below with a different approach of magnetization dynam-
ics: X-ray Detected Magnetic Resonance (XDMR) is a
novel spectroscopy in which XMCD is used to probe locally
the resonant precession of the magnetization caused by a
strong microwave pump field. XDMR is thus a transposi-
tion into the X-ray regime of Optically Detected Magnetic
Resonance (ODMR) [7–10].

Very recently, precessional motions of elemental spin
moments were observed by Bailey et al. [11] who combined
time-resolved soft X-ray differential circular reflectome-
try with Pulsed Induction Magnetometry (PIM). This is
an alternative approach to the same physics even though
time-domain measurements are restricted to low frequency
resonances. At the ESRF, time and efforts were invested
for several years on detecting XDMR in the frequency do-
main [12]. Two experiments were run on Yttrium Iron

Garnet (YIG): (i) the first one at the L-edges of iron [13]
was a feasibility test; (ii) a more challenging experiment
was carried out at the iron K-edge with a high quality
thin film epitaxially grown on a Gadolinium Gallium Gar-
net (GGG) substrate. The latter experiment produced the
first direct evidence of the forced precession of magnet-
ically polarized orbital components [14]. The possibility
to image ferromagnetic resonance eigenmodes was also
demonstrated by Puzic et al. [15] who, again, used soft-
XMCD as a probe.

As illustrated with Figure 1, two complementary ge-
ometries can be envisaged to measure a XDMR signal in
a ferromagnetic thin film magnetized perpendicularly:

(i) In the longitudinal geometry, the wavevector kx of the
incident, circularly polarized X-rays is parallel to the
static magnetic field H0, whereas the microwave pump
field hp is perpendicular to H0 which is arbitrarily
taken here to coincide with the direction of the equilib-
rium magnetization. If one assumes that the length of
the equilibrium magnetization (Ms) is invariant in the
precession, there should be along the direction of H0

a time-invariant change in the magnetization (∆Mz)
that could be probed with XMCD.

(ii) In the transverse geometry, the wavevector kx is per-
pendicular to both H0 and hp: the precession of the
magnetic moments would now induce a larger XMCD
signal proportional to ∆M⊥ but oscillating at the mi-
crowave resonance frequency.
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Fig. 1. XDMR in Longitudinal or Transverse geometries. Note
the time-invariant character of the XMCD signal due to ∆MZ .

Obviously, the detection of the XDMR signal in the trans-
verse geometry requires a fast X-ray detector and a very
sophisticated electronics. What makes the longitudinal ge-
ometry particularly attractive is precisely the argument
that no fast X-ray detector is needed because the XDMR
signal will be shown to be proportional to the microwave
power which can be amplitude modulated at low fre-
quency.

In Section 2, we review the conceptual bases of a sim-
ple interpretation of X-ray detected FMR in the uniform
mode. We focus onto the regime of steady-state precession
caused by a strong microwave field in a ferromagnetic thin
film magnetized perpendicularly to the film. We examine
carefully the approximations required for this model to be
valid but, for conciseness, we defer to a forthcoming pa-
per a more detailed analysis of XDMR in the regime of
elliptical precession with harmonic generation [19]. Other
effects related to non-uniform precession, e.g. longitudi-
nal pumping and parametric amplification of magneto-
exchange modes in metallic thin films are left beyond
the scope of this paper. Let us emphasize that the very
weak intensity of the XDMR signals makes large preces-
sion angles highly desirable, which is possible only with
strong microwave fields. In this respect, it is noteworthy
that Bloembergen and co-workers [16–18] were the first
to recognize long time ago that the longitudinal geometry
was much less sensitive to magnon-magnon scattering pro-
cesses and had a much higher saturation limit regarding
the incident microwave power. Non-linear effects, however,
cannot be neglected at high pumping power [18] and are
known to cause spectacular foldover effects in ferromag-
nets featuring a large anisotropy [20–22].

In Section 3, XDMR will be shown to probe locally,
i.e. at the X-ray absorbing sites, a time-averaged preces-
sion cone for selected magnetization components. We com-
pare what is the relevant information to be extracted from
XDMR spectra recorded at a photoionization K-edge or
at spin-orbit split L-edges. Extended sum rules for XDMR

are considered. In this context, the old concept of fictitious
spin Hamiltonians may have to be revisited to make al-
lowance for crystal field and spin-orbit splitting [23–26]
and to analyze orbit-lattice relaxation mechanisms [27].

2 Uniform mode of precession

2.1 Equations of motion

For any elemental magnetization vector M (r, t), one can
deduce the following equation of motion from the conser-
vation of spin or angular momentum [28,31]:

∂M (r, t)
∂t

= −γT (r, t) = −γM× Be (1)

where γ = gµB/� denotes the gyromagnetic ratio. It was
recognized by Landau and Lifshitz that equation (1) de-
scribed a precession of the magnetization vector M around
an effective, instantaneous field Be(r, t) defined as the
functional derivative of the free energy (F ) with respect
to the magnetic moment M (r, t) [28]:

Be(r, t) = µ0He(r, t) = − δF

δM (r, t)
. (2)

In equation (1), T (r, t) is the total torque acting on
M (r, t): it includes contributions from external and in-
ternal magnetic fields. External fields encompass both the
static (bias) field H0 and the microwave (pump) field hp.
Internal fields include the exchange field Hex, the demag-
netizing field HD due to long range dipolar interactions
and the magnetic anisotropy field HA which results from
miscellaneous contributions due to dipolar and spin-orbit
interactions. The exchange field Hex combines terms pro-
portional to both M and ∇2M but equation (1) implies
that only the inhomogeneous exchange term (∇2M) could
contribute to a non-vanishing torque since M × M ≡ 0.
Even though the spectroscopic splitting factor g should be
a tensor property like in EPR [29], it will be taken below
as a scalar since we are concerned in this paper with the
precession of spin and orbital magnetization components
around one well defined crystal direction.

A phenomenological damping torque is usually added
which drives the magnetization M back towards the equi-
librium state with Meq parallel to He. In the original
Landau-Lifshitz’s formulation (LL), the damping torque
was written [21,32–34]:

TLL = +
ωLL

γM2
s

[M × (M × Be)] (3)

where Ms is the saturation magnetization and ωLL is a
relaxation frequency. Since [M × (M × Be)] is perpen-
dicular to M, TLL can change the direction but not the
magnitude of M [21]. The Landau-Lifshitz-Gilbert (LLG)
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formulation is often preferred because it does not depend
anymore on the effective field Be [21]:

TLLG = +
α

γMs
M × ∂M

∂t
(4)

α = ωLL/γMs being here a dimensionless, scalar con-
stant. Both formulations (LL or LLG) were shown to be
strictly equivalent if one replaces γ with γ∗ = γ(1+α2) in
equation (1) [30]. A formal analogy was alleged between
the Gilbert damping and a magnetic viscosity [33]. It is
noteworthy that the LLG formulation is fully consistent
with the fluctuation-dissipation theorem [35], while this
is not the case for the Bloch-Bloembergen (BB) torque:
TBB = (ωr/γ)[M − Meq] which does not conserve any-
more the length of M [21]. To make it consistent with the
fluctuation-dissipation theorem, TBB has to be modified
according to a prescription proposed by Wangsness [36]:

TBBW = +
ωr

γ

[
M − Ms

Heq
He

]
. (5)

In equation (5) ωr is again a relaxation frequency, Heq

being the effective equilibrium field in the absence of mi-
crowaves. The key difference with respect to the BB for-
mulation is that relaxation is now directed towards the
instantaneous effective field He. The BB equation of mo-
tion and its BBW modified form, are most often associated
with two distinct relaxation times [17,37]: a longitudinal
relaxation time T1 parallel to the direction of H0 and a
transverse relaxation time T2 perpendicular to the direc-
tion of H0. This is attractive because T2 is more sensi-
tive to random processes that couple the uniform mode
(k = 0) to thermally excited magneto-exchange modes
or spin-waves (k �= 0) [37]. On the other hand, Callen
and his colleagues [38,39] pointed out that, even the sim-
plest damping torque model for magnon scattering (TMS)
would require the definition of at least three kinetic pa-
rameters:

TMS = − (λ0k + λ0σ)
2H2

0

[H0 × (M × H0)]

+ [λkσ(Meq −M) +
λ0σ

H0
(MH0 − M.H0)]H0/H0. (6)

Here, λ0k is the probability of destruction of a k = 0
magnon with the simultaneous production of a k �= 0
magnon, and λ0σ and λkσ are the probabilities of disap-
pearance of k = 0 and k �= 0 magnons respectively. Nu-
merous theories of FMR relaxation aimed at calculating
the various λij . Both crystal field and spin-orbit interac-
tion will affect the calculation of λ0k [38] and could cause
a marked orientational anisotropy of the FMR linewidth
∆H as observed experimentally [38–40]. In Section 2.5,
the FMR linewidth ∆H will allow us to switch from one
damping model to another. Fletcher et al. [37] made, how-
ever, the interesting remark that, even though it is inappli-
cable to the average magnetization measured in standard
FMR experiments, the LLG equation should be a reason-
able approximation on the microscopic scale relevant to
XDMR which is a local probe.

Fig. 2. XDMR reference frames: The equilibrium magnetiza-
tion Meq(θ′

eq, φ
′
eq) refers to the laboratory frame (x′,y′, z′).

M(θ1, φ1) defines the precessing magnetization in the preces-
sion frame (x1,y1, z1). Usually, Meq is not rigorously parallel
to the external static bias field H0.

2.2 Small amplitude precession: linear FMR regime

It is most convenient to define the magnetization vector
M by its polar and azimuthal angles (θ, φ) and its norm
M . As illustrated with Figure 2, three different coordi-
nate systems will be considered throughout this paper:
(i) M(θ, φ) will refer to the symmetry axes (X,Y, Z) of a
film grown along the direction Z; (ii) M(θ′, φ′) will refer
to the laboratory frame (X ′, Y ′, Z ′) in which the external
fields H0,hp and the X-ray wavevector kx are defined;
(iii) finally, M(θ1, φ1) will refer to the precession frame
(X1, Y1, Z1) with Z1 directed along the direction of the
equilibrium magnetization Meq which, very often, does
not coincide with the direction of H0.

In the absence of damping, Leeuw et al. [31] noted
that the torque acting on M(θ′, φ′) could be split into
well identified contributions:

Ti =
1

Ms sin θ′
δFi

δφ′
∂M
∂θ′

− 1
Ms sin θ′

δFi

δθ′
∂M
∂φ′

in which Fi(θ′, φ′,∇θ′,∇φ′, r, t) would refer to the Zeeman
free energy FZ , a demagnetizing term FD and a magnetic
anisotropy free energy FA.

If one assumes that the sample is single domain biased
and that M(θ′, φ′) is uniform all over the sample, then
there is no contributing torque left from inhomogeneous
exchange [21,28], whereas partial derivatives can replace
functional derivatives. Since the demagnetizing energy de-
pends on the shape of the sample, we shall restrict our
analysis to the case of infinite thin films, i.e. slabs with
a vanishing aspect ratio. To further compact notations,
FAD will regroup hereafter the magnetic anisotropy free
energy FA plus the demagnetizing energy FD. Then, the
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LLG equations can be rewritten [21,41]:

(1 + α2)
dθ′

dt
= − γ

Ms

(
α
∂F

∂θ′
+

1
sin θ′

∂F

∂φ′

)
(7)

(1 + α2)
dφ′

dt
= +

γ

Ms

(
1

sin θ′
∂F

∂θ′
− α

sin2 θ′
∂F

∂φ′

)
(8)

where F = FZ(θ′, φ′)+FAD(θ′, φ′). Another equation has
still to be added if one decides to use the BBW formalism
because the length of the magnetization vector (M ) is not
anymore invariant:

∂M
∂t

= −ωr

[
Ms

Heq

∂F

∂M
− M

]
. (9)

The direction around which M will precess is defined by
the equilibrium condition: ∂F/∂θ′ = 0 = ∂F/∂φ′. It is
usually impossible to evaluate (θ′eq, φ

′
eq) in closed form and

one has to resort to numerical methods [42]. Anyhow, the
amount of algebra can be reduced if one selects symmetry
coordinates. Let M(θ, φ) refer to such coordinates and let
us expand the magnetic anisotropy free energy FAD(θ, φ)
on a basis of real spherical harmonics:

FAD(θ, φ) =
∑
�,m

A′
�mu�m (θ, φ) + A′′

�mv�m (θ, φ)

in which m ≥ 0 and:

u�m(θ, φ) =
1
2
[C�m(θ, φ) + (−1)mC�−m(θ, φ)]

v�m(θ, φ) =
1
2ı

[C�m(θ, φ) − (−1)mC�−m(θ, φ)]

C�m denoting normalized spherical harmonics [43]. The
coefficients A′

�m and A′′
�m are listed in Appendix A for

a variety of films with either uniaxial or cubic mag-
netic anisotropy. Transformations from symmetry coor-
dinates towards laboratory coordinates are considered in
Appendix B. Conversely, starting with the static Zeeman
free energy in the laboratory coordinates:

FZ(B0) = −MsB0 cos θ′ = −MsB0C10(θ′, φ′)

one may transpose it into the sample coordinates (X,Y, Z)
if the polar and azimuthal angles (θH , φH) of the static
field H0 are known in this new coordinates system:

FZ(B0) = −MsB0[C10(θH , φH)C10(θ, φ)
+ 2u11(θH , φH)u11(θ, φ) + 2v11(θH , φH)v11(θ, φ)].

In practice, one may often identify elementary rotations
(e.g. β′ or β′′ ) transforming the laboratory coordinates
into the sample symmetry coordinates. For example, let us
consider a YIG film grown on a (111) GGG substrate and
let us assume that it is inclined by a tilt angle β′

N = −30◦
just as reported in the XDMR experiment of reference [14]:
θH = −β′

N and φH = 0. Neglecting any cubic anisotropy,
the equilibrium condition is:

sin(θeq − θH)
sin 2θeq

= −1
2
Bu

B0
� 3

2
A′

20

MsB0
(10)

in which Bu is the uniaxial anisotropy field defined as:
Bu = 2Ku1/Ms − µ0DMs (in SI units). Within this defi-
nition, Ku1 is the first order uniaxial anisotropy constant,
the effective demagnetizing factor D being unity only for
a film of vanishing aspect ratio [34,40]. Equation (10) im-
plies that φeq = 0 whereas θeq = 0 only if θH = 0. Typi-
cally, if β′

N = −30◦, Bu = −165 mT and B0 = 424.13 mT,
one obtains θeq = 35.28◦ or θ′eq = θeq − θH = 5.28◦. The
higher the microwave frequency will be, the higher the
static resonance field B0 will also be, and, consequently,
the smaller θ′eq will be.

Introducing a cubic anisotropy field BA1 = 2K1/Ms

does not add any difficulty as long as one neglects all terms
which break cylindrical symmetry (A′

�m, A′′
�m with m �=

0). For a YIG film grown on a (111) substrate, there is
such a weak trigonal term (A′′

43) yielding:

sin(φH − φeq)
cos 3φeq

�
√

2
4
BA1

B0
sin 2θH

×
[
1 +

sin(θeq − θH)
sin 2θH

(1 + 3 cos 2θH) + ...

]
. (11)

With BA1 of the order of 5 mT, the perturbation remains
very small and φ′eq = φeq � 0.26◦ for φH = 0. For the
general case, a computer code makes it a trivial task to
determine the equilibrium direction for any ferromagnetic
film featuring common cubic symmetries.

In the linear regime of FMR, the Smit-Beljers-Suhl
(SBS) formula [44,45] determines the eigen-frequency ω0

of the system, i.e. the FMR resonance frequency without
microwave field nor damping torque. It is classically de-
rived by solving the LLG using a Taylor series expansion
of the total free energy density for small angular devia-
tions from the equilibrium values, i.e. δθ = θ − θeq and
δφ = φ− φeq. This led to the well-known result:

ω0 =
γ

Ms sin θeq
[FθθFφφ − (Fθφ)2]1/2. (12)

Here, Fθθ, Fφφ and Fθφ are short notations for the 2nd
derivatives of the free energy and describe the magnetic
stiffness along the equilibrium direction (θeq, φeq). As
noted by several authors ([21,42]), equation (12) is singu-
lar for θeq = 0 and cannot be used for a ferromagnetic film
with perpendicular magnetization as primarily considered
in Figure 1. Equation (12), however, is most convenient
for a film slightly inclined or rotated (β′, β′′ �= 0).

Energy dissipation can be taken into account with a
complex resonance frequency ω∗

R. Following Skrotskii and
Kurbatov [46], one would get for the real part: ω′

R =
ω0(1 + α2)1/2, and for the imaginary part:

ω′′
R =

1
2
∆ω0 =

1
2
αγ

Ms

[
Fθθ +

1
sin2 θeq

Fφφ

]
(13)

in which ∆ω0 = γ∆H is the FMR linewidth. A similar
formulation was already included in Suhl’s original pa-
per [45]. The practical value of equation (13) is difficult
to assess for a slightly inclined film because additional
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(anisotropic) relaxation processes such as magnon scatter-
ing may become activated as well. Frequency dependent
FMR measurements may not be sufficient to discriminate
unambiguously a true Gilbert damping process against
other relaxation processes which may exhibit as well a
linear frequency dependence of their contribution to the
FMR linewidth [47].

2.3 Large amplitude precession: XDMR regime

In the precession frame (X1, Y1, Z1), M(θ1, φ1) deviates
only slightly from the equilibrium position: θ1eq = 0. Fol-
lowing Gurevich [21], we seek the solution of the equation
of motion in the form:

M = Meq + ∆M(1) + ∆M(2) + ... (14)

in which ∆M(1) � Meq, whereas ∆M(2) � ∆M(1),
∆M(n) with n ≥ 2 referring to weak high-order non-
linear magnetic susceptibilities. Let ∆M⊥ denote the pro-
jection of [∆M(1) + ∆M(2) + ...] in the plane (X1, Y1).
It is anticipated that ∆M(2), which is oriented mainly
along Z1 for a weakly elliptical precession, will have only
a small contribution to ∆M⊥ [18,21]. Forced precession
occurs whenever the azimuthal angle of ∆M⊥ satisfies the
resonance condition:

φ1 = φ(1) +∆φ(n) = ωt+ φ10 +∆φ(n). (15)

Here ∆φ(n) is accounting for the very weak phase modu-
lation due to the generic high order phasor: ∆M (n)

⊥ eiφ(n)
.

Defining next: δφ(n) = φ(n) − φ(1), one would easily show
that, to the lowest approximation,

∆φ(n) � ρ
(n)
⊥ sin δφ(n) + ... with:

ρ
(n)
⊥ = [∆M (n)

⊥ ]/[∆M (1)
⊥ ] � 1.

Note that we will make use below of the extended time-
derivative: ω̃ = dφ1/dt = ω +∆φ̇(n).

It is often postulated that the microwave pump field
bp = µ0hp is circularly polarized in the (X ′, Y ′) plane. In
a real experiment, it is most frequently linearly polarized
(blp). If we assume that it oscillates along X ′, then the
time-dependent part of the Zeeman free energy can be
written as:

FZ(blp) =
√

2
2
Msblp[u11(θ′, φ′ − ωt) + u11(θ′, φ′ + ωt)].

Again the Wigner D-functions D�
mn(α′

0, β
′
0, γ

′
0) provide us

with a simple way to calculate FZ(θ1, φ1) since:

C�m(θ′, φ′) =
∑

n

D∗�
mn(α′

0, β
′
0, γ

′
0)C�n(θ1, φ1) (16)

Here (α′
0 = φ′eq , β

′
0 = θ′eq, γ

′
0 = 0) is an Eulerian rota-

tion transforming the laboratory frame (X ′, Y ′, Z ′) into
the precession frame (X1, Y1, Z1). The determination of

θ′eq and φ′eq was already discussed in Section 2.2. For the
trivial case of a ferromagnetic film with uniaxial symme-
try and perpendicular magnetization, equation (16) is not
needed since θ′eq = φ′eq = 0. It is required either when
the magnetic anisotropy has no cylindrical symmetry, or
when the film is slightly inclined (β′

N ). In the latter case,
we found θ′eq = θeq + β′

N with φ′eq = φeq � 0.
The Zeeman free energy FZ(θ1, φ1) can be split into a

static term due to the bias field B0, a steady-state term
due to the pump field bp, plus two contributions oscillat-
ing at ω and 2ω respectively:

FZ = F
(0)
Z (B0) + F

(0)
Z (bp) +∆F

(1)
Z (ωt) +∆F

(2)
Z (2ωt)

with the identification:

F
(0)
Z (B0) = −MsB0 cosβ′

0 cos θ1

F
(0)
Z (blp) = −1

2
Msblp sin θ1

× [cos β′
0 cosα′

0 cosψ1 − sinα′
0 sinψ1]

∆F
(1)
Z (B0, blp;ωt) = Ms cosα′

0 sinβ′
0

× [B0 sin θ1 cos(ωt+ ψ1) − blp cos θ1 cosωt]

∆F
(2)
Z (blp; 2ωt) = −1

2
Msblp sin θ1

× [cosβ′
0 cosα′

0 cos(2ωt+ ψ1) − sinα′
0 sin(2ωt+ ψ1)]

in which: ψ1 = φ10 +∆φ(n) + γ′0. It appears that ∆F (1)
Z ∝

sinβ′
0. Since β′

0 → 0 for a ferromagnetic film magnetized
perpendicularly, ∆F (1)

Z should vanish or play only a minor
role when the film is slightly tilted. This is not true for
∆F

(2)
Z which has long been recognized to contribute to

harmonic generation.
We noted in Section 2.2 that FAD should preferably

be expressed in the sample symmetry coordinates. We
simply need to replace (α′

0, β
′
0, γ

′
0) in equation (16) with

(α0, β0, γ0), i.e. the Eulerian rotation transforming the
sample symmetry axes (X,Y, Z) into the precession frame
(X1, Y1, Z1). Indeed: α0 = φeq , β0 = θeq and γ0 = 0.

The LLG equations can then be reformulated as:

− 1
Ms sin θ1

∂

∂θ1
[F (0)

Z (bp) + ∆F
(2)
Z (bp)] = P1/γ (17)

+
1

Ms sin2 θ1

∂

∂φ1
[F (0)

Z (bp) + ∆F
(2)
Z (bp)] = Q1/γ (18)

in which we introduced the notations:

P1 = −ω̃ +
γ

Ms sin θ1
∂

∂θ1
F

(0)
Z (B0)

+
γ

Ms sin θ1
∂

∂θ1
[FAD +∆F

(1)
Z (B0, bp)] +

αθ̇1
sin θ1

(19)
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Q1 = −αω̃ − γ

Ms sin2 θ1

∂

∂φ1
[FAD +∆F

(1)
Z (B0, bp)]

− θ̇1
sin θ1

. (20)

Equations (17, 18) lead to the formal result:

tan2 θ1[P 2
1 + (Q1 cos θ1)2] = N2

p (21)

For a linearly polarized microwave field:

N2
lp =

1
2
(γblp)2[cos2 β′

0 cos2 α′
0 + sin2 α′

0](1 + cos 2ωt)

which reduces to:

N2
lp0

=
1
4
(γblp)2[cos2 β′

0 cos2 α′
0 + sin2 α′

0]

=
1
4
(γblp)2[1 − εlp]

if one neglects ∆F (2)
Z in equations (17, 18). Keeping in

mind that (α′
0,β

′
0,γ

′
0) are vanishingly small angles for fer-

romagnetic films with uniaxial anisotropy and perpendic-
ular magnetization, we expect εlp → 0. Only in this limit
is a linearly polarized microwave field strictly equivalent
to a circularly polarized field of half strength. Typically,
with β′

N = −30◦ and β′
0 = θ′eq � 5.28◦, εlp ≤ 0.008.

Another quantity of interest is: tanΨ1 = Q1 cos θ1/P1.
For a linearly polarized microwave field, one obtains: Ψ1 =
ψ1 + χlp, with tanχlp = tanα′

0/ cosβ′
0 in which: χlp → 0

for YIG films.

2.4 Steady-state precession: foldover regime

In practice, equation (21) cannot be exploited unless a
strategy is elaborated to calculate the time-derivatives ω̃
and θ̇1 = dθ1/dt. The steady-state approximation refers
to a drastic simplification: θ̇1 = 0 = ∆φ̇(n) with: ω̃ ≡ ω.
The precession angle θ10 then becomes a constant of the
motion given by:

tan2 θ10 =
N2

p

P 2
10

+ (Q10 cos θ10)2
. (22)

with Q10 = −αω and:

P10 = −ω + γB0 cosβ′
0 +

γ

Ms sin θ10

∂FAD0

∂θ1
.

Note that FAD0 is the sum over all terms FAD�m
(θ1, φ1)

with m = 0 because the steady-state precession angle
cannot depend on the azimuthal angle φ1 that would be
time-dependent. This makes sense only in a system with
cylindrical symmetry around the precession axis. Obvi-
ously, both ∆F

(1)
Z (B0, bp;ωt) and ∆F

(2)
Z (bp; 2ωt) are also

expected to vanish. Furthermore, one should preferably se-
lect a microwave frequency ω high enough to ensure that
the condition Bu/B0 � 1 will cause β′

0 = θ′eq → 0. This

means that the approximation of a circularly polarized
pump field of half strength should be valid.

Bertotti et al. [48,49] pointed out that, under such con-
ditions, the LLG equation admitted exact time-harmonic
solutions (called P-modes) with no generation of higher
order harmonics in spite of the non-linear character of the
LLG equation: in such modes, the magnetization is rigidly
rotating with the microwave field and the precession tra-
jectory is circular. Equation (22), which describes an ideal,
circular precession, should be a good approximation for
XDMR in a YIG film grown on a (111) GGG substrate
when H0 is perpendicular to the film. Since β′

0 = θ′eq = 0,
P10 → P0 with:

P0 = ∆ω + γ

[
Bu − 2

3
BA1

(
1 − 7

4
sin2 θ′0

)]
cos θ′0

in which the notation: ∆ω = −ω + γB0 was introduced
for brevity. Here, we simply ignored the (weak) trigonal
anisotropy term ∝ A′′

43 sin 3φ which would have broken
cylindrical symmetry. Defining next: bcp = blp/2, one may
write:

tan2 θ′0 =
(γbcp)2

P 2
0 + (Q0 cos θ′0)2

(23)

tanΨ10 = tanφ10 =
Q0 cos θ′0

P0
. (24)

Equations (23, 24) allowed Gnatzig, Dötsch et al. [10] to
analyze their ODMR experiments. In the low microwave
power limit, i.e. when cos θ′0 → 1, the resonance condition
P0 = 0 will obviously converge towards the standard FMR
result whereas φ10 → π/2 if P0 → 0.

Equations (23, 24) should still keep sense even though
the precession trajectory is not rigorously circular. It is
required, however, to stay within limits compatible with
a weak perturbation of the P-modes [49]. In such an ex-
tended steady-state regime, one would access to a time-
averaged precession cone θ′0 = θ10 . This regime should
typically accommodate the small perturbation due to the
weak trigonal anisotropy ∝A′′

43 sin 3φ as discussed above.
It should accommodate as well small inclination angles,
i.e. in the limit β′ → 0. In the latter case, we propose
to replace empirically Q10 with: Q′

10
= −αω − γ∆Hinh

in order to account for some inhomogeneous broadening
due to elliptical distortions. Here, ∆Hinh could be deter-
mined either experimentally using standard FMR spectra
or from equation (13).

Neglecting any cubic anisotropy field (BA1) and start-
ing with reasonable guesses for the uniaxial anisotropy
field Bu and the Gilbert damping parameter α, we could
calculate θ′0 by solving numerically equation (23) as a
quartic equation in cos θ′0. An iterative perturbation pro-
cedure allowed us to take into account cubic anisotropy
fields and to refine the determination of the averaged pre-
cession angle. Numerous field-swept spectra θ′0(B0) were
simulated for a variety of samples and geometries. To sim-
ulate the spectra displayed in Figure 3 we injected in our
calculation the parameters of a real YIG film grown by
liquid phase epitaxy (LPE) on a (111) GGG substrate.
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Fig. 3. Simulated field-swept spectra θ′
0(B0) for a perpendicularly magnetized YIG film. For microwave frequencies (F) raised

from 9.51 GHz (a), to 19.0 GHz (b), 38.0 GHz (c) and 76.0 GHz (d), the microwave field bcp was increased from 0.010 mT (a),
to 0.015 mT (b), 0.025 mT (c) and 0.035 mT (d). The multi-valued part (or upper branch) of the spectrum comprised between
BC1(θ1max) and BC2(θ1C2) cannot be scanned experimentally when the microwave power is amplitude modulated.

Standard FMR spectra were recorded at 9.51 GHz with
H0 perpendicular to the film: the resonance field allowed
us to determine Bu − 2/3BA1 � 165 mT, whereas the
FMR linewidth (∆Hfwhm = 0.7 Oe) was found consis-
tent with a very low damping factor: α � 6 × 10−5 and
∆Hinh � 0.35 Oe. As illustrated with Figure 3, the angu-
lar precession spectra simulated with equation (23) sys-
tematically exhibit foldover lineshapes as predicted by
Weiss [20]. Note that these simulations refer to only mod-
est microwave fields (bcp ≤ 0.035 mT) while the pump
frequency was raised up to 76 GHz.

2.5 Critical thresholds

A key parameter for XDMR is the maximum angle of pre-
cession θ1max at resonance, i.e. when P10 = 0. From equa-
tion (22) one obtains:

sin θ1max =
1
2
[cos2 β′

0 cos2 α′
0 + sin2 α′

0]
1/2 (γblp)

αω0
. (25)

At high microwave frequency, i.e. when β′
0 = θ′eq � 0 and

bcp = blp/2, equation (25) can be simplified:

sin θ1max =
(γbcp)
αω0

� bcp

B0
[α]−1.

In the linear regime of FMR relaxation at very low mi-
crowave power, the damping parameter α can be related
either to the linewidth ∆H , to the BB longitudinal (T1)
or transverse (T2) relaxation times, or to the probability
of destruction of k = 0 magnons [39]:

αω0 =
γ∆H

2
=

1
T2

=
1

2T1
+

1
TD

=
λ0k + λ0σ

2
. (26)

Clearly, T1 and T2 become different for finite values of TD

which is accounting (artificially) for the contribution of
extrinsic processes, e.g. magnon-magnon scattering pro-
cesses. From the linewidth definition:

sin θ1max =
2bcp

µ0∆H
=

2bcp

µ0

√
3∆Hpp

.
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Here, ∆Hpp denotes the (peak-to-peak) FMR linewidth
measured at the inflexion points, assuming Lorentzian
lineshapes and again low microwave power. For a circu-
larly polarized pump field, the condition sin θ1max ≤ 1
would yield the following saturation field most often ex-
pressed in terms of the BB relaxation times:

hcpsat ≤
√

2
2
√
γ2T1T2

.

As underlined by Gnatzig, Dötsch et al. [10] and oth-
ers [47], θ1max can never be reached when the microwave
power is amplitude modulated at low frequency because it
is impossible to scan the upper branch of the foldover line-
shape comprised between the two critical fields BC1 and
BC2 marked in Figure 3 and where the slope of the spec-
trum becomes infinite. The largest precession angle com-
patible with XDMR experiments is thus only θ1C2 which
can be determined numerically. As illustrated with Fig-
ure 3, the ratio ρ = θ1C2/θ1max also drops down rapidly
when the FMR lines become very narrow with the prac-
tical consequence that the benefit of decreasing the mi-
crowave frequency gets spoiled. The foldover regime could
be characterized by the extent to which the two critical
fields BC1 and BC2 are split. Bertotti et al. [48] pointed
out that the foldover regime resulted from the co-existence
of four P-modes, only two of them being stable. This al-
lowed them to calculate analytically the exact threshold
field bfold for foldover:

b2fold

(µ0Ms)2
=

4(αω̂)3

|κeff |

√
1 +Ω2

(
√

1 +Ω2 + |Ω|)2 (27)

in which: ω̂ = ω/γMs, Ω = αω̂/κeff , whereas
κeff = Bu/µ0Ms. Approximate formulas of Anderson and
Suhl [50] or Skrotskii and Alimov [51] yield close-lying
threshold fields. For the YIG film magnetized perpendic-
ularly and discussed in Section 2.4, the foldover thresh-
old is quite low: bfold = 0.00045 mT at F = 9.51 GHz.
With such a low threshold, the nonlinear regime is reached
very rapidly and makes standard FMR analyses irrelevant.
Let us emphasize that XDMR experiments should be per-
formed with microwave fields well beyond bfold (see Fig.
3 for illustration). Indeed, the apparent lineshapes mea-
sured under such conditions have no more direct physical
meaning: only the experimental determination of the crit-
ical jump BC2 is of practical interest.

We deliberately ignored so far the contribution of non-
linear terms that couple the uniform mode to higher or-
der magneto-exchange modes or spin waves [18,21,28].
In 1959, Suhl predicted that the precession angle could
hardly exceed another threshold value θ1S beyond which
parametric amplification of spin-waves could also cause
foldover-like FMR lineshapes [52,53]. It is well docu-
mented that θ1S may be quite different for ferromagnetic
thin films magnetized either tangentially or perpendicu-
larly. For circular precession in perpendicularly magne-
tized films, the first order instability predicted by Suhl
can cause only a subsidiary microwave absorption off-
resonance since resonance occurs at the bottom of the

magnon band, far above ω/2. Under such conditions, θ1S

will refer to a 2nd order instability process: the annihila-
tion of two magnons is a process which changes the norm
of the magnetization vector Ms but occurs only at ex-
tremely high microwave power [54]. In other terms, the
steady-state precession model developed in Section 2.4 for
a ferromagnetic thin film with the magnetization perpen-
dicular to the film should be reasonably safe to analyze
XDMR spectra.

With tangentially magnetized films, the Suhl insta-
bility threshold occurs at much lower microwave power.
Nevertheless, the situation should not be desperate since
it was predicted by Suhl himself [55] that the instability
threshold could be substantially raised using either field
or frequency modulation techniques [56,57]. As noted by
Nibarger et al. [58], the instability threshold could be also
increased in PIM experiments carried out in the time-
domain due to incoherent excitation of spinwaves. There
is, however, the major complication that the precession is
elliptic: this problem will be addressed in a forthcoming
paper [19].

3 Information content of XDMR

3.1 Normalized XDMR cross sections

In this section, we focus onto the model of steady-state pre-
cession around the direction of Meq. As far as the length
of the precessing magnetization can be regarded as truly
invariant, the following change ∆MZ1 of the axial magne-
tization is to be expected:

∆MZ1 = Ms[cos θ10 − 1]

� −1
2

tan2 θ10

(
1 − 3

4
tan2 θ10 + ...

)
Ms (28)

Indeed, we are also interested in the oscillating transverse
components:

∆M⊥u1 = −√
2u11(θ10 , φ1)Ms = sin θ10 cosφ1Ms

∆M⊥v1 = −
√

2v11(θ10 , φ1)Ms = sin θ10 sinφ1Ms (29)

Since the precession angles θ10 are most often small,
∆MZ1 is only a 2nd order effect compared to ∆M⊥ be-
cause: sin θ10 � tan θ10 [1 − 1

2 tan2 θ10 + ...].
Whereas the model of wide-angle precession of Sec-

tion 2.3 referred to the precession frame (X1, Y1, Z1),
XMCD cross-sections have ultimately to be calculated
with respect to the laboratory axes (X ′, Y ′, Z ′). We need
therefore to project onto the latter axes not only the
equilibrium magnetization Meq which is responsible for
the static XMCD, but also the time-invariant compo-
nent ∆MZ1 and the oscillating transverse components
∆M⊥. This was achieved using equation (16) of Sec-
tion 2.3 and the relevant Wigner D-functions. Indeed, the
case of a ferromagnetic film with uniaxial anisotropy and
perpendicular magnetization is once again trivial because
(α′

0,β
′
0,γ

′
0) → 0. In the perspective of future extensions of
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the present theory to include weakly elliptic precession, we
tried to keep a formulation of XDMR cross-sections as gen-
eral as possible, i.e. with (α′

0,β′
0,γ′0) �= 0. We found anyhow

attractive to normalize systematically the XDMR cross-
sections with respect to the static (equilibrium) XMCD
cross-sections measured in strictly the same geometry and
under the same conditions.

In the longitudinal geometry of Figure 1, i.e. kx = k‖,
the non-oscillating component ∆MZ′ leads to:

∆σXDMR(k‖)
[∆σXMCD(k‖)]eq

= (cos θ10 − 1) � −1
2

tan2 θ10 (30)

in which the cosβ′
0 factors cancel out. Whenever the equi-

librium magnetization (Meq) will depart from the direc-
tion of the static bias field (B0), one should detect an
additional XDMR signal oscillating at the microwave fre-
quency ω along Z ′:

∆σXDMR(k‖;ωt)
[∆σXMCD(k‖)]eq

� − tanβ′
0 tan θ10 cos(φ1 + γ′0). (31)

This signal being ∝ tanβ′
0, vanishes for a ferromagnetic

film with perpendicular magnetization and true uniaxial
anisotropy. It will grow, however, as soon as the sample is
inclined or rotated (β′, β′′ �= 0) and a situation in which:
tanβ′

0 � tan θ10 is not irrealistic.
In the transverse geometry, i.e. kx = k⊥, the projec-

tion along X ′ of the oscillating components ∆M⊥ is:

∆MX′ � tan θ10Ms

× [cosβ′
0 cosα′

0 cos(φ1 + γ′0) − sinα′
0 sin(φ1 + γ′0)] (32)

whereas the projection along Y ′ is:

∆MY ′ � tan θ10Ms

× [cosβ′
0 sinα′

0 cos(φ1 + γ′0) + cosα′
0 sin(φ1 + γ′0)]. (33)

As expected for the projection of any circular precession
trajectory, equations (32,33) describe a weakly elliptical
precession trajectory in the (X ′, Y ′) plane. Thus, for a
transverse XDMR signal measured along Y ′ one obtains
the following normalized cross-sections:

∆σXDMR(k⊥;ωt)
[∆σXMCD(k‖)]eq

� tan θ10

× [sinα′
0 cos(φ1 + γ′0) +

cosα′
0

cosβ′
0

sin(φ1 + γ′0)]. (34)

Whenever the equilibrium magnetization (Meq) will de-
part from the direction of the static bias field (B0), there
should be also a very weak non-oscillating signal along Y ′:

∆σXDMR(k⊥)
[∆σXMCD(k‖)]eq

� −1
2

tanβ′
0 sinα′

0 tan2 θ10 . (35)

This signal should be extremely weak because both tanβ′
0

and sinα′
0 are small whereas tan2 θ10 is itself a second

order effect.

Equations (30, 34) lead to the remarkable conclusion
that, on combining XDMR and XMCD measurements
properly, one could determine reliably the steady-state
precession angles locally, i.e. directly at the X-ray ab-
sorbing sites. Remember that it is never a trivial task
to determine the effective precession angles using conven-
tional FMR experiments because: (i) the exact value of
bp is poorly known at the sample location, i.e. inside a
microwave resonator or on a microstrip circuit; (ii) radi-
ation damping effects can only be crudely estimated; (iii)
it is difficult to disentangle which are the relevant contri-
butions to the linewidth.

Notice that the oscillating components ∆σXDMR(ωt)
vary linearly with the microwave induction bp whereas the
non-oscillating components ∆σXDMR are proportional
to the microwave power ∝b2p. This has the important
implication that the non-oscillating longitudinal compo-
nent ∆σXDMR is a true time-reversal odd property which
should change its sign when B0 is reverted independently
of the sign of bp. Only normalized cross sections are in-
sensitive to time-reversal: this is why equation (30) yields
a phase-independent, steady-state precession angle.

3.2 Ellipticity of precession

In FMR, the precession ellipticity is defined as [21]:

E = 1 − |∆M⊥min|2
|∆M⊥max|2 (36)

which does not imply that the trajectory had to be a pla-
nar ellipse. Indeed, E vanishes for a true steady-state circu-
lar precession caused by a circularly polarized microwave
field in a ferromagnetic thin film satisfying the criteria of
cylindrical symmetry of Section 2.4. In contrast, a ferro-
magnetic thin film magnetized tangentially, will system-
atically exhibit an elliptic precession caused primarily by
the uniaxial anisotropy field Bu.

Let us anticipate that in a near future, it will become
attractive to determine locally the ellipticity of the preces-
sion trajectory. Let us also emphasize that the magnetic
ellipticity is a time-reversal even property of the system
which involves squared transverse components of the mag-
netization. It may then be preferable to select an X-ray
probe that would be directly sensitive to the square of
the magnetization. This is possible if we replace the in-
cident circularly polarized X-rays with linearly polarized
X-rays, i.e. if we substitute X-ray Magnetic Linear Dichro-
ism (XMLD) to XMCD. This would be a direct transpo-
sition in the X-ray regime of a peculiar ODMR experi-
ment performed by Venitskii et al. [8] at optical wave-
lengths: these authors measured the precession ellipticity
in a single crystal of YIG using the magnetic birefringence
of the crystal, i.e. the Cotton-Mouton effect. The advan-
tage of XDMR would lay in the element/edge selectivity
of the X-ray probe as emphasized in the next sections.
Note that the detection geometry would look rather un-
usual for XMLD measurements since, in XDMR, the X-
ray wavevector should be colinear with the static bias field
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B0 = µ0H0 and not perpendicular to it as this is required
for conventional static XMLD measurements.

Squaring a transverse magnetization component ∆M⊥
oscillating at the microwave frequency ω will result into a
steady-state (non-oscillating) component proportional to
the microwave power (∝b2p) plus another term oscillating
at twice the microwave frequency. If the microwave power
is square modulated at low frequency, synchronous detec-
tion should allow us to extract a very weak steady-state
XMLD signal from the intense background associated with
the X-ray absorption cross section. The precession elliptic-
ity would then be obtained in rotating the linear polariza-
tion of the incident X-ray, e.g. using an X-ray quarter-wave
plate. This approach would benefit from the advantage
that, again, no fast X-ray detection electronics would be
needed. Unfortunately, the XMLD probe is much less sen-
sitive than XMCD and the insertion losses of a quarter-
wave plate will spoil the X-ray photon flux: thus, it looks
today like a formidable challenge to achieve the huge dy-
namic range required for such measurements.

There is another experimental approach which may de-
serve attention if a fast X-ray detection system becomes
soon operational: keeping XMCD as a probe, we may try
to detect directly the harmonic distortion of the precession
trajectory producing a longitudinal component ∆MZ′ os-
cillating at twice the microwave frequency [18], not to be
confused with the signal of equation (31). This approach
exploiting the non-linear character of the LLG equation
will be envisaged in a forthcoming paper [19]. It should
be technically most relevant at low microwave frequencies
(e.g. in the L or S bands), with the advantage that the
lower resonant bias field would increase the ratio Bu/B0

in equation (10) and thus maximize the ellipticity of the
precession trajectories.

3.3 XDMR at a K-edge

It is a quite remarkable peculiarity of XMCD and XDMR
experiments carried out at a K-edge that the effective op-
erators responsible for X-ray circular dichroism are purely
of orbital nature. This is obvious if one refers to the (his-
torical) two-step model of XMCD [1]. Recall that the
first step would be an atomic Fano effect. In the absence
of spin-orbit coupling in the 1s core state, the angular
momentum carried by the absorbed X-ray photon is en-
tirely converted into orbital polarization of the ejected
photoelectron. However, the empty final states are spin-
polarized: spin-orbit coupling appears then as the primary
cause of the orbital polarization responsible for XMCD.
This was elegantly summarized in the orbital sum-rule [1]:∫

dEx

�ωx
[∆σj+ +∆σj−] =

3
�
Ω�〈Lz〉� (37)

in which∆σj± denotes the X-ray absorption cross-sections
for the core states j± = c± 1/2; Ω� denotes here the ab-
sorption cross-section per hole of symmetry � in the va-
lence band and can be viewed as a constant for a given
atom and a given edge. At K-edges, we have c = 0 and for
3d transition metals, the final state are 4p orbitals (� = 1).

In the XDMR experiment of reference [14], the sample
was a YIG (Y3Fe5O12) thin film and the weak Fe K-edge
XDMR signal allowed us to probe the precession of se-
lected orbital magnetization components at the iron sites.
Since the energy of the X-ray monochromator was kept
fixed at the maximum of the dichroism, it is more appro-
priate to exploit a differential formulation of equation (37)
as proposed by Strange or Ebert and others [3–5]:

∆σK = 3Ω1
d

d∆Ex
〈Lz〉p = 3Ω1〈�z〉p (38)

in which ∆Ex = Ex − EF is the energy of the photo-
electron referred to the Fermi level. The effective operator
appearing in the left handside of equation (38) defines
the orbital polarization of p-projected densities of states
(DOS) in the valence band. For brevity, we may call it
orbital magnetization DOS.

One should keep in mind that equations (37) and (38)
were established for 1s → 4p electric dipole (E1) transi-
tions. Since the maximum of the XMCD signal was found
in the pre-edge region of the X-ray Absorption Near Edge
Structures (XANES), one could envisage a small con-
tamination of the XMCD spectrum by 1s → 3d electric
quadrupole (E2) transitions. Carra et al. [2] have also pro-
posed an integral sum-rule for the E2 transitions at a K-
edge:

∫
dEx

(�ωx)2
[∆σj+ +∆σj−](E2) ∝

1
50

{〈Lz〉3d +
1
3
(5 cos2 ϑ− 3)〈Ozzz〉3d} cosϑ (39)

in which 〈Ozzz〉3d is a component of a pure orbital oc-
tupolar tensor [2]. Recall that this tensor should anyhow
vanish in a cubic crystal field, at least in the absence of
any magnetic bias field. At this stage, the important mes-
sage is that we can extend to quadrupolar transitions our
initial statement that no effective spin operator is directly
involved in XMCD at a K-edge. Indeed, as emphasized by
Guo [5], the orbital magnetization DOS would vanish ei-
ther if no spin-orbit coupling would exist in the final state,
or if no spin-polarization of the empty state occurred.

3.4 XDMR at spin-orbit split L-edges

XMCD signals are known to be much more intense at spin-
orbit split L-edges, especially when the XANES spectra
exhibit strong white lines. This is true in the soft X-ray
range where the XMCD signals recorded at the L-edges
of 3d transition metals are typically two orders of mag-
nitude more intense than the XMCD signals recorded at
the K-edge of the same element. This is a formidable ad-
vantage in favour of soft-XDMR experiments, but it is
partly counter-balanced by serious complications in the
exploitation of the XDMR spectra. The reason is that it
becomes much more speculative to disentangle the pre-
cessional dynamics of the spin and orbital magnetization
components. Indeed, equation (37) still holds true for the
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2p → nd (E1) transition (� = 2), but ∆σj+ and ∆σj−
now refer to absorption cross-sections measured respec-
tively at LIII and LII edges. In practice, it is never a
trivial exercise to combine accurately XMCD signatures
recorded at the LIII and LII edges because: (i) one needs
to couple together measurements referring to strictly the
same energy∆Ex = Ex−EF of the photoelectron; (ii) the
XMCD signals should be carefully normalized to the rele-
vant edge jumps σ0j+ and σ0j− . As far as these difficulties
can be overcome, then, one may exploit again the differ-
ential formulation of the sum-rules to derive the following
equations:

∆σLIII

σ0j+

=
Cd

3Nb

d

d∆Ex
{〈Lz〉d +

2
3
〈Sz〉d +

7
3
〈Tz〉d}

=
Cd

3Nb
{〈�z〉d +

2
3
〈sz〉d +

7
3
〈tz〉d} (40)

∆σLII

σ0j−
=
Cd

6
d

d∆Ex
{〈Lz〉d − 4

3
〈Sz〉d − 14

3
〈Tz〉d}

=
Cd

6
{〈�z〉d − 4

3
〈sz〉d − 14

3
〈tz〉d} (41)

in which Nb would be the branching ratio and Cd a con-
stant factor. Selecting Nb � 2 would make equation (40)
consistent with the (commonly accepted) statistical limit
of the branching ratio. Unfortunately, it is well docu-
mented that quite significant deviations from the statisti-
cal limit are to be expected (and were observed) due to
spin-orbit coupling in the final state. Refined estimates of
Nb and Cd should be obtained on combining very accurate
XMCD measurements over the whole XANES range to-
gether with ab initio simulations of static XMCD spectra:
this is a stringent pre-requisite to exploit XDMR experi-
ments at spin-orbit split edges.

A priori, XDMR data collected at the LIII and LII

edges could provide us simultaneously with information
regarding the precession dynamics of the spin and orbital
magnetization of d-DOS. In equations (40,41), there is
an additional contribution of a peculiar dipole magneti-
zation DOS, i.e. d〈Tz〉d/dE, which reflects (to the lowest
order) the asphericity of the spin magnetization due to
spin-orbit interactions or anisotropic charge distribution.
In practice, the expectation value of 〈Tz〉 should be much
smaller than the spin magnetization 〈Sz〉 and its contri-
bution is often neglected. As far as XDMR is concerned,
〈Tz〉 should marginally affect the norm of the precessing
spin magnetization in equations (28, 30) and will be ne-
glected below. If we now inject equations (40, 41) into
equation (30) and extend simultaneously the definition of
∆MZ1 to each individual magnetization DOS component,
i.e. 〈sz〉d and 〈�z〉d, one obtains a set of coupled equations:

{〈�z〉d +
2
3
〈sz〉d}[tan2 θ10 ]LIII = 〈�z〉d tan2 θ�10

+
2
3
〈sz〉d tan2 θs10 (42)

{〈�z〉d − 4
3
〈sz〉d}[tan2 θ10 ]LII = {〈�z〉d} tan2 θ�10

− 4
3
{〈sz〉d} tan2 θs10 (43)

in which θs10 and θ�10 denote the precession angles of
the spin and orbital magnetization DOS which we are
most interested in, whereas [θ10 ]LIII and [θ10 ]LII refer
to the effective precession angles one would measure ex-
perimentally at the relevant L-edge using equation (30).
Further simplification is possible on introducing the ra-
tio η = 〈�z〉d/2〈sz〉d that can be most easily determined
experimentally from XMCD measurements:

(1 + 3η)[tan2 θ10 ]LIII = tan2 θs10 + 3η tan2 θ�10 (44)
(2 − 3η)[tan2 θ10 ]LII = 2 tan2 θs10 − 3η tan2 θ�10 . (45)

The latter equations show that independent XDMR ex-
periments performed at the LIII and LII edges should, in
principle, allow us to access to the precession angles of the
spin and orbital magnetization of d-projected DOS. Equa-
tions (44, 45) could then be viewed as a dynamical exten-
sion of the static differential sum-rules. Very recently, we
already used these equations to analyze XDMR spectra
recorded at the Yttrium L-edges in YIG thin films [59].

3.5 Fictitious spin Hamiltonian revisited

In the early days of FMR, Kittel [60] and Van Vleck [61]
stressed the important point that FMR was not an atomic
spectroscopy and that the torque equation J̇ = M × H
did not hold true in a crystalline environment [26]. To
some extent, fictitious spin Hamiltonians proved to be an
elegant tool to obviate this difficulty. Nevertheless, Kit-
tel concluded one of his early papers on FMR with the
remark [60] that, in a microwave absorption FMR experi-
ment, changes in the orbital angular momentum should be
undetectable due to compensating changes in the lattice
angular momentum. It is the originality of XDMR to com-
bine magnetic resonance with an element specific atomic
spectroscopy. As shown in Sections 3.3–3.4, XDMR should
let us investigate how precession dynamics affects locally
p- or d-projected spin and orbital magnetizations DOS.

There is nevertheless a point which deserves more at-
tention. For a given microwave pumping power, the preces-
sion angle can be directly determined from the normalized
XDMR cross-section, e.g. using equation (30). One may
expect the angular precession frequency to be identical for
the spin and orbital magnetization components, but the
precession cones can hardly be the same because the gy-
romagnetic factors for spin (gS) and orbital moments (gL)
are inherently different. Note that gS and gL should affect
in the same way static XMCD as well as time-dependent
XDMR measurements. Recall that XMCD sum rules were
initially established using atomic multiplets calculations
and were found to yield reasonably good estimates for
the spin and orbital magnetic moments. As long as static
XMCD results prove to be correct, then the precession
angles for spin and orbital magnetization should be in the
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ratio 2:1 as expected from atomic g factors [14]. This point
is nevertheless calling for very careful experimental con-
firmations, e.g. using equations (44, 45) at L-edges. Un-
fortunately, very few high quality XMCD data were col-
lected so-far on insulators (and paramagnets) for which
one might suspect the crystal field to play a major role
and fictitious spin Hamiltonians to be helpful.

Let us also take this opportunity to draw attention
onto the fact that the spectroscopic splitting factor g
should have not only a magnitude but also a sign char-
acterizing the chirality of the precession: an interesting
point raised by Blume et al. [26] was that, in systems with
significant orbital contributions, the magnetization could
precess in the direction opposite to that of the free-electron
spin. This was shown to happen at least in rare-earth or
actinide compounds (e.g. NpF6) with fairly large orbital
moments. Phase sensitive XDMR experiments carried out
in the transverse geometry could perhaps become sensi-
tive to the absolute chirality of the precession of spin and
orbital magnetization components as a function of the he-
licity on the incoming X-rays.

Large orbital moments in a ground state manifold will
favor a strong orbit-lattice coupling with the consequence
that the spin-lattice relaxation time T1 may become very
short and the FMR lineshape desperately broad. In their
theory of ferrimagnetic resonance in rare-earth doped iron
garnets, Kittel and De Gennes [62,63] pointed out that a
fast relaxing mechanism could overdamp (semi-quench)
the precession of the magnetization in the captive rare-
earth lattice. Van Vleck [24,25], however, supported the
alternative view that a slow longitudinal relaxation mecha-
nism would still dominate if the splitting of the rare-earth
energy levels by crystal or exchange fields was large com-
pared to the resonance frequency. Such systems are known
to exhibit giant anisotropy shifts and anisotropic relax-
ation effects [21,25]. We are back into a situation where
dynamical (fictitious) spin Hamiltonians should again help
[27,24,25]. Note that Van Vleck also casted serious doubt
about the adequacy of using a Gilbert damping factor to
represent necessarily complicated spin-lattice coupling ef-
fects [24]. Anyhow, one should be prepared to face dra-
matic sensitivity problems to record XDMR spectra of
systems featuring large ground-state orbital moments be-
cause the broad FMR lineshapes will restrict the efficiency
of any type of microwave pumping process.

3.6 Conclusion

With this paper, we want to draw attention onto the fact
that XDMR is not just another exotic way to detect FMR.
Given that the microwave power required for an XDMR
experiment is ca. six orders of magnitude higher than in
conventional FMR, this approach would have a limited
future. However, we have shown in Section 3 that a com-
bination of XDMR with static XMCD measurement could
provide us with a reliable estimation of the average pre-
cession cone for selected spin and orbital magnetization
components at X-ray absorbing sites. In contrast, stan-
dard FMR spectra would yield the average precession an-

gle of an effective spin magnetization only: this informa-
tion, even if it was not heavily spoiled by experimental
artefacts, would be of limited interest.

Clearly, what makes XDMR attractive is the element
and edge selectivity of the XMCD probe. Unfortunately, it
was shown in Section 2 that the resonance condition was
poorly element selective, e.g. through either a tiny varia-
tion of the spectroscopic splitting factor g, or local varia-
tions of the magnetocrystalline anisotropy. Unless a spher-
ically shaped single crystal is used, the contribution ofBA1

is most often overwhelmed by the uniaxial anisotropy field
Bu that is not element-dependent since its origin is to be
found in the demagnetizing field and interfacial anisotropy
fields which are sample and shape dependent. This could
be one good reason why Bailey et al. [11] failed to de-
tect any significant phase difference in their experiments
carried out at the L-edges of iron and nickel in permalloy.

In contrast, one may expect the nature of the pre-
cessing moments to be strongly element selective: a prob-
lem of considerable interest would be to disentangle the
precession dynamics of orbital magnetization components
which should be strongly element and edge dependent.
In this respect, one may hope that XDMR could yield
valuable new information regarding the important prob-
lem of orbit-lattice coupling which is driving the whole
spin-lattice relaxation mechanisms.

To emphasize the complementarity of FMR and
XDMR, let us recall the basic assumption made in FMR,
which is that the orbital moment is quenched to the 1st
order, spin-orbit being introduced only as a 2nd order per-
turbation mixing excited states into the ground state [29].
In XDMR, we are concerned with the reverse side of the
problem which is to understand how the precession of spin
and orbital polarized DOS above the Fermi level can be
coupled to the precession of (fictitious) spins in the ground
state.

The authors greatly appreciated the constant support of Dr. Y.
Petroff. We dedicate this paper in memoriam of our colleague
and friend Dr. Paolo Carra.

Appendix A: Magnetic anisotropy models

A.1 Uniaxial anisotropy along the [001] crystal axis

Uniaxial anisotropy most often results from growth-
induced stress in thin films and occurs naturally in hexag-
onal crystals. Let us start with the classical power series
expansion in sin θ [34,40]:

∆F = Ku1 sin2 θ +Ku2 sin4 θ + ...

To obtain ∆FAD, we still need to add the contribution of
the demagnetizing energy[34]:

∆FAD = ∆F +
µ0M

2
s

2
D cos2 θ
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where the effective demagnetizing coefficient D ≡ 1 only
for a film of vanishing aspect ratio. Expanding ∆FAD on
real spherical harmonics, one readily obtains the desired
coefficients:

A′
20 = −2

3
Ku1

[
1 +

8
7
Ku2

Ku1

]
+
µ0

3
DM2

s ; A′
40 =

8
35
Ku2.

A.2 Cubic symmetry with tetragonal distortion along
the growth direction [001]

Following Heinrich and Cochran [34], the magnetocrys-
talline anisotropy free energy can be written:

∆FAD = −Ku cos2 θ − 1
2
K1‖ sin4 θ [cos4 φ+ sin4 φ]

− 1
2
K1⊥ cos4 θ +

µ0M
2
s

2
D cos2 θ.

Expanding∆FAD on a real spherical harmonic basis yields
the coefficients:

A′
20 = −2

3
Ku

[
1 +

3
7
K1⊥ −K1‖

Ku

]
+
µ0

3
DM2

s

A′
40 = − 4

35
K1⊥ − 3

35
K1‖; A′

44 = −
√

2
35
K1‖.

A.3 Film grown along a cubic [111] direction

Let us select the following set of unit vectors for the sym-
metry axes: e1 = [110]; e2 = [112]; e3 = [111]. Using
standard coordinate transformations and neglecting irrel-
evant constant terms, one obtains:

∆FAD = −Ku cos2 θ − 2
3
K1 sin2 θ +

7
12
K1 sin4 θ

+
√

2
3
K1 sin3 θ cos θ sin 3φ+

µ0M
2
s

2
D cos2 θ

whereKu refers to an uniaxial, growth induced anisotropy.
The same result was reported by Farle [40]. Expanding
∆FAD on a real spherical harmonic basis yields the fol-
lowing coefficients:

A′
20 = −2

3
Ku +

µ0

3
DM2

s ;A′
40 =

2
15
K1;A′′

43 = −4
3

√
2
35
K1

A.4 Film grown along a cubic [110] direction

If one selects now the following unit vectors for the sym-
metry axes: e1 = [ 1√

2
1√
2
0]; e2 = [001]; e3 = [ 1√

2
1√
2
0], one

obtains:

∆FAD = −Ku cos2 θ −K1 sin2 θ +
3
2
K1 sin2 θ sin2 φ

+K1 sin4 θ −K1 sin4 θ sin2 φ− 3
4
K1 sin4 θ sin4 φ

+
µ0M

2
s

2
D cos2 θ

with the following spherical coefficients:

A′
20 = −2

3
Ku +

µ0

3
DM2

s

A′
40 =

1
20
K1;A′

42 = −1
2

√
2
5
K1;A′

44 = −3
4

√
2
35
K1.

Appendix B: Inclined/rotated films

Very often, the sample is either inclined, i.e. rotated by a
polar angle β′ around the laboratory axis Y ′, or rotated
around the laboratory axis X ′ by the azimuthal angle β′′.
We describe below how the spherical coefficients A′

�m and
A′′

�m of Section 2.2 transform under such rotations. This
is straightforward using the Wigner D-functions which
transform spherical harmonics according to:

C�n(θ, φ) =
∑
m

D�
mn(α′, β′, γ′)C�m(θ′, φ′)

in which (θ, φ) refer to the symmetry coordinate frame
whereas (θ′, φ′) refer to the laboratory frame. The
D�

mn(α′, β′, γ′) functions are represented by the product
of three functions:

D�
mn(α′, β′, γ′) = e−ımα′

d�
mn(β′) e−ınγ′

in which d�
mn(β′) is a real function whose explicit forms

are tabulated elsewhere [43] up to � = 4.

B.1 Inclined film: polar rotation

For a polar rotation β′ around Y ′, there is the simplifica-
tion: α′ = γ′ = 0. For the uniaxial anisotropy which refers
to A′

20C20(θ, φ), the relevant transformation is:

A′
20C20(θ, φ) = A′

20

{
1
2
(3 cos2 β′ − 1)C20(θ′, φ′)

−
√

3
2

sin 2β′u21(θ′, φ′) +

√
3
2

sin2 β′u22(θ′, φ′)
}
.

The cubic anisotropy term of cylindrical symmetry is
much more cumbrous:

A′
40C40(θ, φ) = A′

40

{
1
8
(3 − 30 cos2 β′

+35 cos4 β′)C40(θ′, φ′)

+
√

5
4

sin 2β′(3 − 7 cos2 β′)u41(θ′, φ′)

−
√

10
4

sin2 β′(1 − 7 cos2 β′)u42(θ′, φ′)

−
√

35
4

sin 2β′ sin2 β′u43(θ′, φ′)

+
√

70
8

sin4 β′u44(θ′, φ′)
}
.
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The trigonal component ∝A′′
43v43, which, according to Ap-

pendix A.3, is to be expected for a YIG film grown on a
(111) GGG substrate, would transform as:

A′′
43v43(θ, φ) = A′′

43

{
3
√

7
4

sin2 β′ cosβ′v41(θ′, φ′)

−
√

14
4

sinβ′(1 − 3 cos2 β′)v42(θ′, φ′)

−1
4

cosβ′(5 − 9 cos2 β′)v43(θ′, φ′)

−
√

2
4

sinβ′(1 + 3 cos2 β′)v44(θ′, φ′)
}
.

The tetragonal component ∝A′
44u44 that is found in the

case of thin films grown on a (001) substrate, will trans-
form as:

A′
44u44(θ, φ) = A′

44

{√
70

16
sin4 β′C40(θ′, φ′)

+
√

14
8

sin 2β′ sin2 β′u41(θ′, φ′)

+
√

7
4

sin2 β′(1 + cos2 β′)u42(θ′, φ′)

+
√

2
8

sin 2β′(3 + cos2 β′)u43(θ′, φ′)

+
1
8
(1 + 6 cos2 β′ + cos4 β′)u44(θ′, φ′)

}
.

Finally, let us consider as well the transformation of the
quadratic term A′

42u42 that is involved in the anisotropy
free energy of films grown on (110) substrates:

A′
42u42(θ, φ) = A′

42

{√
10
8

sin2 β′(7 cos2 β′

− 1)C40(θ′, φ′)

+
√

2
4

sin 2β′(7 cos2 β′ − 4)u41(θ′, φ′)

+
1
2
(1 − 6 cos2 β′ + 7 cos4 β′)u42(θ′, φ′)

−
√

14
4

sin 2β′ cos2 β′u43(θ′, φ′)

+
√

7
4

sin2 β′(1 + cos2 β′)u44(θ′, φ′)
}
.

B.2 Rotated film: azimuthal rotation

For an azimuthal rotation β′′ around OX ′, we have
α′′ = +π

2 and γ′′ = −π
2 . The uniaxial anisotropy term

A′
20C20(θ, φ) will transform as:

A′
20C20(θ, φ) = A′

20{
1
2
(3 cos2 β′′ − 1)C20(θ′, φ′)

−
√

3
2

sin 2β′′v21(θ′, φ′) −
√

3
2

sin2 β′′u22(θ′, φ′)}.

Similarly, the cubic anisotropy term of cylindrical symme-
try would transform as:

A′
40C40(θ, φ) = A′

40

{
1
8
(3 − 30 cos2 β′′

+35 cos4 β′′)C40(θ′, φ′)

+
√

5
4

sin 2β′′(3 − 7 cos2 β′′)v41(θ′, φ′)

+
√

10
4

sin2 β′′(1 − 7 cos2 β′′)u42(θ′, φ′)

+
√

35
4

sin 2β′′ sin2 β′′v43(θ′, φ′)

+
√

70
8

sin4 β′′u44(θ′, φ′)
}
.

The trigonal component A′′
43v43 would transform as:

A′′
43v43(θ, φ) = A′′

43

{
−

√
35
4

sin3 β′′ cosβ′′C40(θ′, φ′)

+
√

7
4

sin2 β′′(1 − 4 cos2 β′′)v41(θ′, φ′)

+
√

14
2

sinβ′′ cos3 β′′u42(θ′, φ′)

−3
4
(1 − cos2 β′′ − 4

3
cos4 β′′)v43(θ′, φ′)

+
√

2
4

sinβ′′ cosβ′′(3 + cos2 β′′)u44(θ′, φ′)
}
.

Regarding the tetragonal component A′
44u44, one would

obtain:

A′
44u44(θ, φ) = A′

44

{√
70

16
sin4 β′′C40(θ′, φ′)

+
√

14
8

sin 2β′′ sin2 β′′v41(θ′, φ′)

−
√

7
4

sin2 β′′(1 + cos2 β′′)u42(θ′, φ′)

−
√

2
8

sin 2β′′(3 + cos2 β′′)v43(θ′, φ′)

+
1
8
(1 + 6 cos2 β′′ + cos4 β′′)u44(θ′, φ′)

}

whereas the quadratic term A′
42u42 will transform as:

A′
42u42(θ, φ) = A′

42

{√
10
8

sin2 β′′(1 − 7 cos2 β′′)C40(θ′, φ′)

−
√

2
4

sin 2β′′(7 cos2 β′′ − 4)v41(θ′, φ′)

+
1
2
(1 − 6 cos2 β′′ + 7 cos4 β′′)u42(θ′, φ′)

−
√

14
4

sin 2β′′ cos2 β′′v43(θ′, φ′)

−
√

7
4

sin2 β′′(1 + cos2 β′′)u44(θ′, φ′)
}
.
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B.3 Rotated-inclined film

For the sake of brevity, we shall consider only the trans-
formation of the uniaxial anisotropy term in successive
rotations (β′, β′′):

A′
20C20(θ, φ) = A′

20{
1
2
(3 cos2 β′ cos2 β′′ − 1) C20(θ′, φ′)

−
√

3
2
[sin 2β′ cosβ′′ u21(θ′, φ′)

+ sin 2β′′ cos2 β′ v21(θ′, φ′)]

+

√
3
2
[ [1 + cos2 β′(cos2 β′′ − 2)]u22(θ′, φ′)

+ sin 2β′ sinβ′′ v22(θ′, φ′)].
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